548 research outputs found

    Is the GSI anomaly due to neutrino oscillations? - A real time perspective -

    Full text link
    We study a model for the "GSI anomaly" in which we obtain the time evolution of the population of parent and daughter particles directly in real time, considering explicitly the quantum entanglement between the daughter particle and neutrino mass eigenstates in the two-body decay. We confirm that the decay rate of the parent particle and the growth rate of the daughter particle do \emph{not} feature a time modulation from interference of neutrino mass eigenstates. The lack of interference is a consequence of the orthogonality of the mass eigenstates. This result also follows from the density matrix obtained by tracing out the unobserved neutrino states. We confirm this result by providing a complementary explanation based on Cutkosky rules applied to the Feynman diagram that describes the self-energy of the parent particle.Comment: 11 page

    (3+2)-Cycloaddition Reactions of Oxyallyl Cations

    Get PDF
    The (3+2)-cycloaddition reaction involving oxyallyl cations has proven to be a versatile and efficient approach for the construction of five-membered carbo- and heterocycles, which are prevalent frameworks in natural products and pharmaceuticals. The following article will provide a brief summary of recent disclosures on this process featuring chemo-, regio- and diastereoselective oxyallyl cycloadditions with both electron-rich and electron-deficient 2Ï€ partners
    • …
    corecore